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1  Scope of the Chapter

This chapter covers the fitting of linear regression models, along with the examination of the fit of the
model and the calculation of correlation coefficients.

2 Background
2.1 Aims of Regression Modelling

Regression analysis is the study of the relationship between one specific random variable, the dependent or
response variable, and one or more known variables, called the independent variables or explanatory
variables. This relationship is represented by a mathematical model, or an equation, which associates the
dependent variable with the independent variables, together with a set of relevant assumptions. This
regression model will involve a set of unknown parameters. Values of the parameters which give the best
fit for a given set of data are obtained, these values are known as the estimates of the parameters.

The reasons for using a regression model are twofold. The first is to obtain a description of the relationship
between the variables as an indicator of possible causality. The second reason is to predict the value of the
dependent variable from a set of values of the independent variables. Accordingly, the most usual statistical
problems involved in regression analysis are:

— to obtain best estimates of the unknown regression parameters;
— to test hypotheses about these parameters;
— to determine the adequacy of the assumed model,;

— to verify the set of relevant assumptions.

2.2 Linear Regression Models

When the regression model is linear in the parameters (but not necessarily in the independent variables),
then the regression model is said to be linear; otherwise the model is classified as nonlinear.

The most elementary form of regression model is the simple linear regression of the dependent variable,
Y, on a single independent variable, x, which takes the form

E(Y)= 00+ bz (1)

where E(Y) is the expected or average value of Y and 3, and (3| are the parameters whose values are to
be estimated, or, if the regression is required to pass through the origin (i.e., no constant or mean term),

E(Y) = pa. (2)
An extension of this is multiple linear regression in which the dependent variable, Y, is regressed on the p
(p > 1) independent variables, x1,x»,...,x,, which takes the form
E(Y) = Bo+ fixy + foxa + - + By (3)
where 31, 5,,...,08, and [y are the unknown parameters.

A special case of multiple linear regression is polynomial linear regression, in which the p independent
variables are in fact powers of the same single variable x (i.e., x; = 2/, for j=1,2,...,p).

In this case, the model defined by (3) becomes
E(Y) = o+ iz + Bz’ + -+ + By’ (4)
In the exponential regression model, the equation takes the form
E(Y) = a+ be. (5)

It should be noted that equation (4) represents a /inear regression, since even though the equation is not
linear in the independent variable, z, it is linear in the parameters 3y, 3, 5, ..., 3y, whereas the regression
model of equation (5) is nonlinear, as it is nonlinear in the parameters a, b and c.
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2.3 Fitting the Regression Model — Least-squares Estimation

The method used to determine values for the parameters is, based on a given set of data, to minimize the
sums of squares of the differences between the observed values of the dependent variable and the values
predicted by the regression equation for that set of data — hence the term least-squares estimation. For
example, if a regression model of the type given by equation (3), viz

E(Y) = Boxo + Bix1 + foxa + -+ - + Bpxp,
where xy = 1 for all observations, is to be fitted to the n data points such that
Yi = Boxo; + Bixii + Boxoi + -+ Bppi + €, i=1,2,....n

where e; are unknown random errors with E(e;) = 0 and var(e;) = 02, o? being a constant, then the
estimates of the regression parameters are calculated by minimizing

n
3o ©
i=1

with respect to 3y, 51, 52, . .., Bp. If the errors do not have constant variance, i.e.,

0'2

2
var(e;) = o;,” = —
( L) i W;

then weighted least-squares estimation is used in which

n
Z 2
W;€; (7)
i=1
1S minimised.

2.4 Regression Models and Designed Experiments

One application of regression models is in the analysis of experiments. In this case the model relates the
dependent variable to qualitative independent variables known as factors. Factors may take a number of
different values known as levels. For example, in an experiment in which one of four different treatments
is applied the model will have one factor with four levels. Each level of the factor can be represented by a
dummy variable taking the value 0 or 1. So in the example there are four dummy variables x;, for
j=1,2,3,4, such that x;; = 1 if the ith observation received the jth treatment, and z;; = 0 otherwise,
along with a variable for the mean, zy: x;0 = 1 for all 4.

If there were 7 observations the data would be:

Treatment Y x¢9 z1 =2 23 24
1 ypw 11 0 0 0
2 yw 1 0 1 0 0
2 w3 10 1 0 0
3 vy 1 0 0 1 0
3 ys 1 0 0 1 0
4 v 1 0 0 0 1
4 yy 1 0 0 0 1

Models which include factors are sometimes known as General Linear (Regression) Models. When dummy
variables are used it is common for the model not to be of full rank. In the case above the model would
not be of full rank because

Tij4g = Ti0 — LTj1 — T2 — 43,

fori =1,2,...,7. This means that the effect of x4 cannot be distinguished from the combined effect of x,
x1, 3 and x3. This is known as aliasing. In this situation the aliasing can be deduced from the
experimental design and as a result the model to be fitted in such situations is known as intrinsic aliasing.
In the example above no matter how many times each treatment is replicated (other than 0) the same
aliasing will still be present. If the aliasing is due to a particular data set to which the model is to be fitted
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then it is known as extrinsic aliasing. If in the example above observation 1 was missing then the x| term
would also be aliased. In general intrinsic aliasing may be overcome by changing the model, e.g. remove
xo or x; from the model, or by introducing constraints on the parameters, e.g. 5 + G, + 03 + 04 = 0.

If aliasing is present then there will no longer be a unique set of least-squares estimates for the parameters
of the model but the fitted values will still have a unique estimate. Some linear functions of the parameters
will also have unique estimates, these are known as estimable functions. In the example given above the
functions (8y + 1) and (8, — (35) are both estimable.

2.5 Examining the Fit of the Model

Having fitted a model two questions need to be asked: first, ‘are all the terms in the model needed?’, and
second, ‘is there some systematic lack of fit?’. To answer the first question, either confidence intervals can
be computed for the parameters or ¢-tests can be calculated to test hypotheses about the regression
parameters — for example, whether the value of the parameter, (3, is significantly different from a specified
value, by, (often zero). If the estimate of () is 0) and its standard error is se(()) then the ¢-statistic is:

B — b

se(6r)
It should be noted both the tests and the confidence intervals may not be independent. Alternatively F tests
based on the residual sums of squares for different models can also be used to test the significance of terms
in the model. If model 1, giving residual sum of squares RSS, with degrees of freedom v, is a sub-model

of model 2, giving residual sum of squares RSS, with degrees of freedom v, i.e., all terms in model 1 are
also in model 2, then to test if the extra terms in model 2 are needed the F' statistic:

(RSS] - RSSZ)/(V] - I/z)
RSSz/Vz

F =

may be used. These tests and confidence intervals require the additional assumption that the errors e; are
Normally distributed.

To check for systematic lack of fit the residuals, r; = y; — 4;, where g; is the fitted value, should be
examined. If the model is correct then they should be random with no discernable pattern. However, due to
the way the residuals are calculated they do not have constant variance. Now the vector of fitted values can
be written as a linear combination of the vector of observations of the dependent variable, y, § = Hy and
hence the vector of residuals, 7, is 7 = (I — H)y, I being the identity matrix. The variance-covariance
matrix of the residuals is then (I — H)o?. The diagonal elements of H, h;; can therefore be used to
standardize the residuals. The value h;; is a measure of the effect of the independent variables for the ith
observation on the fitted model and is known as the leverage. Several forms of standardized residuals and
measures of influence can be computed.

As § = Hy (H is idempotent); the variance of §); is h;o> for observations with equal variance o2. This
variance can be used to compute a confidence interval for the fitted model. If a confidence interval for a
predicted observation is required the variance (1 + h;;)o? should be used.

2.6 Computational Methods

Let X be the n by p matrix of independent variables and y be the vector of values for the dependent
variable. To find the least-squares estimates of the vector of parameters, (, the QR decomposition of X is
found, i.e.,

X = QR

v= ()

R being a p by p upper triangular matrix and () is a n by n orthogonal matrix. If R is of full rank then B
is the solution to:

where
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Rﬁ:cl

where ¢ = Q7y and ¢, is the first p rows of c. If R is not of full rank a solution is obtained by means of a
singular value decomposition (SVD) of R,

D 0
RZQ*(Q O)PT7

where D is a k by k diagonal matrix with non-zero diagonal elements, k being the rank of R, and @, and
P are p by p orthogonal matrices. This gives the solution

B=PD'Ql ey,
P, being the first £ columns of P and Q,; being the first £ columns of Q..

This will be only one of the possible solutions. Other estimates be may be obtained by applying constraints
to the parameters. If weighted regression with a vector of weights w is required then both X and y are
premultiplied by w'/%

The method described above will, in general, be more accurate than methods based on forming (X” X) (or
a scaled version), and then solving the equations

(X" X)3=Xx"y.

2.7 Updating the Model

In order to select a suitable model it is often useful to add or remove an independent variable from the
model. One approach to model selection, forward selection, involves adding one variable at time, the
variable chosen being the one that leads to the greatest inprovement in the fit of the model. An alternative
approach is to fit a full model and then drop the variable that makes least contribution to the fit of the
model, this is known as backward elimination.

In addition to adding or removing variables from the regression model it is sometimes useful to add or
drop an observation from a model. If the data is being recorded in sequence or if the data is too large to be
input in one go then the model can be fitted by adding one observation at a time until all data has been
included. The parameter estimates can be examined at intervals to see if there is any significant change in
the model.

2.8 Robust Estimation

Least-squares regression can be greatly affected by a small number of unusual, atypical, or extreme
observations. To protect against such occurrences, robust regression methods have been developed. These
methods aim to give less weight to an observation which seems to be out of line with the rest of the data
given the model under consideration. That is to seek to bound the influence. For a discussion of influence
in regression, see Hampel et al. (1986) and Huber (1981).

There are two ways in which an observation for a regression model can be considered atypical. The values
of the independent variables for the observation may be atypical or the residual from the model may be
large.

The first problem of atypical values of the independent variables can be tackled by calculating weights for
each observation which reflect how atypical it is, i.e., a strongly atypical observation would have a low
weight. There are several ways of finding suitable weights; some are discussed in Hampel et al. (1986).

The second problem is tackled by bounding the contribution of the individual e; to the criterion to be
minimized. When minimizing (6) a set of linear equations is formed, the solution of which gives the least-
squares estimates. The equations are:

n
Zeiavij:O, ]:0,1,,]€
i=1

[NP3491/6] g02int.5



Introduction — g02 NAG C Library Manual

These equations are replaced by

S leifo)ay =0, j=0,1,....k, (8)
P

where o2 is the variance of the e;, and 1 is a suitable function which down weights large values of the
standardized residuals e; /0. There are several suggested forms for ¢, one of which is Huber’s function,

—c, t<c
P(t) = { tJt<c ©)
c, t>c.
Q)
-c ¢
‘ c
Figure 1

The solution to (8) gives the M-estimates of the regression coefficients. The weights can be included in (8)
to protect against both types of extreme value. The parameter o can be estimated by the median absolute
deviations of the residuals or as a solution to, in the unweighted case:

3" x(e/d) = (n— k)

where y is a suitable function and 3 is a constant chosen to make the estimate unbiased. y is often chosen
to be v?/2 where 9 is given in (9).

2.9 Generalized Linear Models

Generalized linear models are an extension of the general linear regression model discussed above. They
allow a wide range of models to be fitted. These included certain non-linear regression models, logistic and
probit regression models for binary data, and log-linear models for contingency tables. A generalized linear
model consists of three basic components:

(a) A suitable distribution for the dependent variable Y. The following distributions are common:
(1) Normal
(i1) binomial
(iii) Poisson
(iv) gamma

In addition to the obvious uses of models with these distributions it should be noted that the Poisson
distribution can be used in the analysis of contingency tables while the gamma distribution can be
used to model variance components. The effect of the choice of the distribution is to define the
relationship between the expected value of Y, F(Y') = p, and its variance and so a generalized linear
model with one of the above distributions may be used in a wider context when that relationship
holds.

(b) A linear model n = f;z;, n is known as a linear predictor.
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(¢c) A link function g(-) between the expected value of Y and the linear predictor, g(;:) = 7. The
following link functions are available:

For the binomial distribution ¢, observing y out of ¢:
(i) logistic link: n = log(u/(t — u));

(ii) probit link: n = &' (u/t);

(iii) complementary log-log: n = log(—log(1 — (u/t))).
For the Normal, Poisson, and gamma distributions:

(1) exponent link: n = u®, for a constant a;

(i) identity link: n = p;

(iii) log link: 1 = logu;

(iv) square root link: n = ,/u;

(v) reciprocal link: n = i

For each distribution there is a canonical link. For the canonical link there exist sufficient statistics for
the parameters. The canonical links are:

(1) Normal — identity;

(i) binomial — logistic;

(iii)) Poisson — logarithmic;

(iv) gamma — reciprocal.
For the general linear regression model described above the three components are:
(1) Distribution — Normal;
(i) Linear model — ) B;x;;
(iii) Link — identity.
The model is fitted by maximum likelihood; this is equivalent to least-squares in the case of the Normal
distribution. The residual sums of squares used in regression models is generalized to the concept of
deviance. The deviance is the logarithm of the ratio of the likelihood of the model to the full model in
which [i; = y; where f[i; is the estimated value of u;. For the Normal distribution the deviance is the
residual sum of squares. Except for the case of the Normal distribution with the identity link x> and F,
tests based on the deviance are only approximate; also the estimates of the parameters will only be

approximately Normally distributed. Thus only approximate z- or t-tests may be performed on the
parameter values and approximate confidence intervals computed.

The estimates are found by using an iterative weighted least-squares procedure. This is equivalent to the
Fisher scoring method in which the Hessian matrix used in the Newton—Raphson method is replaced by its
expected value. In the case of canonical links the Fisher scoring method and the Newton—Raphson method
are identical. Starting values for the iterative procedure are obtained by replacing the p; by y; in the
appropriate equations.

2.10 Correlation Analysis

Correlation analysis aims to measure the strength of the association between pairs of variables. In
correlation analysis all variables are treated equally, in contrast to regression analysis in which one variable
is considered the response variable and other variables are the explanatory variables.

The correlation between two variables is measured by a correlation coefficient, r, with —1 <r < 1. If
r = 0 then there is no association between the two variables and the can be considered as independent. If
r =1 then the is a perfect positive association between the two variables and if » = —1 there is a perfect
negative association between the two variables, that is if one variable increases the other decreases. The
form of the association measured depends on the correlation coefficient.
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There are two main types of correlation coefficient, the product-moment correlation coefficient and
nonparametric or rank correlation coefficients. The product-moment correlation coefficient, sometimes
called the Pearson product-moment correlation coefficient, measures the linear association between two
variables, that is it measures the extent to which one variable increases or decreases linearly with the other.
It is equivalent to the regression coefficient of one variable on the other when both variables have been
standardised to have unit variance.

There are two common rank based correlation coefficients, Kendall’s tau and Spearman’s rho. They both
measure monotonic association. This is the extent to which one variable simply increases or decreases with
the other without specifying the form of the increase or decrease. In choosing between the two coefficients,
Kendall’s tau is often preferred when the data take a small number of different values and there are a large
number of ties, otherwise Spearman’s rho is used. In comparing rank correlation coefficients to the
product-moment correlation coefficient, the rank correlation coefficients are able to detect correlation when
the relationship is basically nonlinear but monotonic rather than just linear and rank correlation coefficients
also have the advantage of being less effected by extreme values or outliers in the data.

It should be noted that it is possible for there to be a nonlinear relationship between two variables such that
both the product-moment and rank correlation coefficients are small. To be sure of detecting the
relationships between variables the correlation analysis should be combined with examining plots of the
data and, if required, applying suitable transformations to the data.

To test the significance of correlation coefficients t-tests can be used. For the product-moment correlation
coefficient the statistic,

n—2
1—172
computed from a sample of size n, has a Student’s ¢-distribution with n — 2 degrees of freedom under the

null hypothesis that there is no correlation between the two variables. For Spearman’s rho the distribution
of the statistic is only approximate for large samples.

T

2.11 Partial Correlation

The correlation coefficients described above measure the association between two variables ignoring any
other variables in the system. Suppose there are three variables X, Y and Z as shown in the path diagram
below.

L———mM Y

The association between Y and Z is made up of the direct association between Y and Z and the
association caused by the path through X, that is the association of both Y and Z with the third variable
X. For example if Z and Y were cholesterol level and blood pressure and X were age since both blood
pressure and cholesterol level may increase with age the correlation between blood pressure and cholesterol
level eliminating the effect of age is required.

The correlation between two variables eliminating the effect of a third variable is know as the partial
correlation. If p,,, p., and p,, represent the correlations between x, y and z then the partial correlation
between Z and Y given X is:

Pzy = PzaPzxy

Ja=e)-e,)

The partial correlation is then estimated by using product-moment correlation coefficients.
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In general, let a set of variables be partitioned into two groups Y and X with n, variables in Y and n,
variables in X and let the variance-covariance matrix of all n, + n, variables be partitioned into

Yry gy |
Then the variance-covariance of Y conditional on fixed values of the X variables is given by:
Bz = Byy — Ly X, EM.

The partial correlation matrix is then computed by standardising %,,..

2.12 Robust Estimation of Correlation Coefficients

The product-moment correlation coefficient can be greatly affected by the presence of a few extreme
observations or outliers. There are robust estimation procedures which aim to decrease the effect of
extreme values.

Mathematically these methods can be described as follows. A robust estimate of the variance-covariance
matrix, C, can be written as:

C=r(A"A)""

where 72 is a correction factor to give an unbiased estimator if the data is Normal and A is a lower

triangular matrix. Let x; be the vector of values for the ith observation and let z;, = A(z; — ), 6 is a
robust estimate of location, then 6 and A are found as solutions to:

—Z w(|lzill,)=

and

—Z (lzill) 22 = vllill)T =0,

where w(t), u(t) and v(t) are functions such that they return value 1 for reasonable values of ¢ and
decreasing values for large t. The correlation matrix can then be calculated from the variance-covariance
matrix. If w, u, and v returned 1 for all values then the product-moment correlation coefficient would be
calculated.
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4  Available Functions
Compute product-moment correlation coefficients

g02bxc  Product-moment correlation, unweighted/weighted correlation and covariance matrix, allows
variables to be disregarded

Compute partial correlation coefficients

g02byc  Computes partial correlation/variance-covariance matrix from correlation/variance-covariance
matrix computed by nag corr cov (g02bxc)

Compute Kendall’s tau and Spearman’s rho rank correlation coefficients

g02brc  Kendall and/or Spearman non-parametric rank correlation coefficients, allows variables and
observations to be selectively disregarded

Robust estimate of covariance matrix

g02hkc Robust estimation of a correlation matrix, Huber’s weight function

Least-squares regression

g02cac  Simple linear regression with or without a constant term, data may be weighted

g02cbc  Simple linear regression confidence intervals for the regression line and individual points
g02dac  Fits a general (multiple) linear regression model

g02dcc  Add/delete an observation to/from a general linear regression model

g02dec Add a new independent variable to a general linear regression model

g02dfc  Delete an independent variable from a general linear regression model

g02ddc  Estimates of regression parameters from an updated model

g02dgc Fits a general linear regression model to new dependent variable

g02dkc Estimates of parameters of a general linear regression model for given constraints

g02dnc  Estimate of an estimable function for a general linear regression model

Compute standardized residuals and measures of influence

g02fac  Calculate standardized residuals and influence statistics

Generalized linear model

g02gac Fits a generalized linear model with Normal errors

g02gbc  Fits a generalized linear model with binomial errors

g02gcc  Fits a generalized linear model with Poisson errors

g02gdc Fits a generalized linear model with gamma errors

g02gkc Estimates and standard errors of the parameters of a general linear model for given constraints

g02gnc  Estimable function and the standard error of a generalized linear model

Robust regression

g02hac  Robust regression, standard M -estimates
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